Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.089
Filtrar
1.
BMC Plant Biol ; 24(1): 253, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589788

RESUMO

BACKGROUND: In many parts of the world, including Iran, walnut (Juglans regia L.) production is limited by late-spring frosts. Therefore, the use of late-leafing walnuts in areas with late-spring frost is the most important method to improve yield. In the present study, the phenotypic diversity of 141 seedling genotypes of walnut available in the Senejan area, Arak region, Markazi province, Iran was studied based on morphological traits to obtain superior late-leafing genotypes in the cropping seasons of 2022 and 2023. RESULTS: Based on the results of the analysis of variance, the studied genotypes showed a significant variation in terms of most of the studied morphological and pomological traits. Therefore, it is possible to choose genotypes for different values ​​of a trait. Kernel weight showed positive and significant correlations with leaf length (r = 0.32), leaf width (r = 0.33), petiole length (r = 0.26), terminal leaflet length (r = 0.34), terminal leaflet width (r = 0.21), nut length (r = 0.48), nut width (r = 0.73), nut weight (r = 0.83), kernel length (r = 0.64), and kernel width (r = 0.89). The 46 out of 141 studied genotypes were late-leafing and were analyzed separately. Among late-leafing genotypes, the length of the nut was in the range of 29.33-48.50 mm, the width of the nut was in the range of 27.51-39.89 mm, and nut weight was in the range of 8.18-16.06 g. The thickness of shell was in the range of 1.11-2.60 mm. Also, kernel length ranged from 21.97-34.84 mm, kernel width ranged from 21.10-31.09 mm, and kernel weight ranged from 3.10-7.97 g. CONCLUSIONS: Based on important and commercial traits in walnut breeding programs, such as nut weight, kernel weight, kernel percentage, kernel color, and ease of kernel removal from nuts, 15 genotypes, including no. 92, 91, 31, 38, 33, 18, 93, 3, 58, 108, 16, 70, 15, 82, and 32 were superior and could be used in walnut breeding programs in line with the introduction of new cultivars and the revival of traditional walnut orchards to commercialize them.


Assuntos
Juglans , Juglans/genética , Nozes/anatomia & histologia , Nozes/genética , Árvores , Plântula/genética , Melhoramento Vegetal , Genótipo , Folhas de Planta/genética
2.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621016

RESUMO

Many studies have shown that multidrug and toxic compound extrusion (MATE) is a new secondary transporter family that plays a key role in secondary metabolite transport, the transport of plant hormones and disease resistance in plants. However, detailed information on this family in Gleditsia sinensis has not yet been reported. In the present study, a total of 45 GsMATE protein members were identified and analysed in detail, including with gene classification, phylogenetic evaluation and conserved motif determination. Phylogenetic analysis showed that GsMATE proteins were divided into six subfamilies. Additionally, in order to understand these members' regulatory roles in growth and development in G. sinensis , the GsMATEs expression profiles in different tissues and different developmental stages of thorn were examined in transcriptome data. The results of this study demonstrated that the expression of all MATE genes varies in roots, stems and leaves. Notably, the expression levels of GsMATE26 , GsMATE32 and GsMATE43 differ most in the early stages of thorn development, peaking at higher levels than in later stages. Our results provide a foundation for further functional characterisation of this important class of transporter family in G. sinensis .


Assuntos
Gleditsia , Gleditsia/genética , Gleditsia/metabolismo , Filogenia , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética
3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621933

RESUMO

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Assuntos
Ácido Abscísico , Mentha , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas
4.
Theor Appl Genet ; 137(5): 105, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622387

RESUMO

KEY MESSAGE: Two major-effect QTL GlcA07.1 and GlcA09.1 for green leaf color were fine mapped into 170.25 kb and 191.41 kb intervals on chromosomes A07 and A09, respectively, and were validated by transcriptome analysis. Non-heading Chinese cabbage (NHCC) is a leafy vegetable with a wide range of green colors. Understanding the genetic mechanism behind broad spectrum of green may facilitate the breeding of high-quality NHCC. Here, we used F2 and F7:8 recombination inbred line (RIL) population from a cross between Wutacai (dark-green) and Erqing (lime-green) to undertake the genetic analysis and quantitative trait locus (QTL) mapping in NHCC. The genetic investigation of the F2 population revealed that the variation of green leaf color was controlled by two recessive genes. Six pigments associated with green leaf color, including total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, lutein, and carotene were quantified and applied for QTL mapping in the RIL population. A total of 7 QTL were detected across the whole genome. Among them, two major-effect QTL were mapped on chromosomes A07 (GlcA07.1) and A09 (GlcA09.1) corresponding to two QTL identified in the F2 population. The QTL GlcA07.1 and GlcA09.1 were further fine mapped into 170.25 kb and 191.41 kb genomic regions, respectively. By comparing gene expression level and gene annotation, BraC07g023810 and BraC07g023970 were proposed as the best candidates for GlcA07.1, while BraC09g052220 and BraC09g052270 were suggested for GlcA09.1. Two InDel molecular markers (GlcA07.1-BcGUN4 and GlcA09.1-BcSG1) associated with BraC07gA023810 and BraC09g052220 were developed and could effectively identify leaf color in natural NHCC accessions, suggesting their potential for marker-assisted leaf color selection in NHCC breeding.


Assuntos
Brassica , Locos de Características Quantitativas , Clorofila A , Melhoramento Vegetal , Folhas de Planta/genética , Carotenoides , Brassica/genética , Estudos de Associação Genética
5.
BMC Genomics ; 25(1): 334, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570736

RESUMO

BACKGROUND: Mimosa bimucronata originates from tropical America and exhibits distinctive leaf movement characterized by a relative slow speed. Additionally, this species possesses the ability to fix nitrogen. Despite these intriguing traits, comprehensive studies have been hindered by the lack of genomic resources for M. bimucronata. RESULTS: To unravel the intricacies of leaf movement and nitrogen fixation, we successfully assembled a high-quality, haplotype-resolved, reference genome at the chromosome level, spanning 648 Mb and anchored in 13 pseudochromosomes. A total of 32,146 protein-coding genes were annotated. In particular, haplotype A was annotated with 31,035 protein-coding genes, and haplotype B with 31,440 protein-coding genes. Structural variations (SVs) and allele specific expression (ASE) analyses uncovered the potential role of structural variants in leaf movement and nitrogen fixation in M. bimucronata. Two whole-genome duplication (WGD) events were detected, that occurred ~ 2.9 and ~ 73.5 million years ago. Transcriptome and co-expression network analyses revealed the involvement of aquaporins (AQPs) and Ca2+-related ion channel genes in leaf movement. Moreover, we also identified nodulation-related genes and analyzed the structure and evolution of the key gene NIN in the process of symbiotic nitrogen fixation (SNF). CONCLUSION: The detailed comparative genomic and transcriptomic analyses provided insights into the mechanisms governing leaf movement and nitrogen fixation in M. bimucronata. This research yielded genomic resources and provided an important reference for functional genomic studies of M. bimucronata and other legume species.


Assuntos
Fabaceae , Mimosa , Fixação de Nitrogênio/genética , Haplótipos , Folhas de Planta/genética
6.
BMC Plant Biol ; 24(1): 250, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580919

RESUMO

Alternative splicing (AS), a pivotal post-transcriptional regulatory mechanism, profoundly amplifies diversity and complexity of transcriptome and proteome. Liriodendron chinense (Hemsl.) Sarg., an excellent ornamental tree species renowned for its distinctive leaf shape, which resembles the mandarin jacket. Despite the documented potential genes related to leaf development of L. chinense, the underlying post-transcriptional regulatory mechanisms remain veiled. Here, we conducted a comprehensive analysis of the transcriptome to clarify the genome-wide landscape of the AS pattern and the spectrum of spliced isoforms during leaf developmental stages in L. chinense. Our investigation unveiled 50,259 AS events, involving 10,685 genes (32.9%), with intron retention as the most prevalent events. Notably, the initial stage of leaf development witnessed the detection of 804 differentially AS events affiliated with 548 genes. Although both differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) were enriched into morphogenetic related pathways during the transition from fishhook (P2) to lobed (P7) leaves, there was only a modest degree of overlap between DASGs and DEGs. Furthermore, we conducted a comprehensively AS analysis on homologous genes involved in leaf morphogenesis, and most of which are subject to post-transcriptional regulation of AS. Among them, the AINTEGUMENTA-LIKE transcript factor LcAIL5 was characterization in detailed, which experiences skipping exon (SE), and two transcripts displayed disparate expression patterns across multiple stages. Overall, these findings yield a comprehensive understanding of leaf development regulation via AS, offering a novel perspective for further deciphering the mechanism of plant leaf morphogenesis.


Assuntos
Liriodendron , Liriodendron/genética , Processamento Alternativo , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Genes de Plantas
7.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652336

RESUMO

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Assuntos
Arabidopsis , Proteínas de Bactérias , Tabaco , Doenças das Plantas , Espécies Reativas de Oxigênio , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Tabaco/genética , Tabaco/microbiologia , Tabaco/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Citrus/microbiologia , Citrus/genética , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liberibacter/patogenicidade , Liberibacter/fisiologia , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiologia , Resistência à Doença/genética
8.
BMC Plant Biol ; 24(1): 297, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632517

RESUMO

BACKGROUND: Developing and enriching genetic resources plays important role in the crop improvement. The flag leaf affects plant architecture and contributes to the grain yield of wheat (Triticum aestivum L.). The genetic improvement of flag leaf traits faces problems such as a limited genetic basis. Among the various genetic resources of wheat, Thinopyrum intermedium has been utilized as a valuable resource in genetic improvement due to its disease resistance, large spikes, large leaves, and multiple flowers. In this study, a recombinant inbred line (RIL) population was derived from common wheat Yannong15 and wheat-Th. intermedium introgression line SN304 was used to identify the quantitative trait loci (QTL) for flag leaf-related traits. RESULTS: QTL mapping was performed for flag leaf length (FLL), flag leaf width (FLW) and flag leaf area (FLA). A total of 77 QTLs were detected, and among these, 51 QTLs with positive alleles were contributed by SN304. Fourteen major QTLs for flag leaf traits were detected on chromosomes 2B, 3B, 4B, and 2D. Additionally, 28 QTLs and 8 QTLs for flag leaf-related traits were detected in low-phosphorus and drought environments, respectively. Based on major QTLs of positive alleles from SN304, we identified a pair of double-ended anchor primers mapped on chromosome 2B and amplified a specific band of Th. intermedium in SN304. Moreover, there was a major colocated QTL on chromosome 2B, called QFll/Flw/Fla-2B, which was delimited to a physical interval of approximately 2.9 Mb and contained 20 candidate genes. Through gene sequence and expression analysis, four candidate genes associated with flag leaf formation and growth in the QTL interval were identified. CONCLUSION: These results promote the fine mapping of QFll/Flw/Fla-2B, which have pleiotropic effects, and will facilitate the identification of candidate genes for flag leaf-related traits. Additionally, this work provides a theoretical basis for the application of Th. intermedium in wheat breeding.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico , Melhoramento Vegetal , Fenótipo , Folhas de Planta/genética
9.
Sci Rep ; 14(1): 9131, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644374

RESUMO

The chloroplast (cp) genome sequence of Mussaenda pubescens, a promising resource that is used as a traditional medicine and drink, is important for understanding the phylogenetic relationships among the Mussaenda family and genetic improvement and reservation. This research represented the first comprehensive description of the morphological characteristics of M. pubescens, as well as an analysis of the complete cp genome and phylogenetic relationship. The results indicated a close relationship between M. pubescens and M. hirsutula based on the morphological characteristics of the flower and leaves. The cp was sequenced using the Illumina NovaSeq 6000 platform. The results indicated the cp genome of M. pubescens spanned a total length of 155,122 bp, including a pair of inverted repeats (IRA and IRB) with a length of 25,871 bp for each region, as well as a large single-copy (LSC) region and a small single-copy (SSC) region with lengths of 85,370 bp and 18,010 bp, respectively. The results of phylogenetic analyses demonstrated that species within the same genus displayed a tendency to group closely together. It was suggested that Antirhea, Cinchona, Mitragyna, Neolamarckia, and Uncaria might have experienced an early divergence. Furthermore, M. hirsutula showed a close genetic connection to M. pubescens, with the two species having partially overlapping distributions in China. This study presents crucial findings regarding the identification, evolution, and phylogenetic research on Mussaenda plants, specifically targeting M. pubescens.


Assuntos
Genoma de Cloroplastos , Filogenia , Folhas de Planta/genética , Análise de Sequência de DNA/métodos
10.
Methods Mol Biol ; 2787: 209-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656492

RESUMO

Coffea spp. is the source of one of the most widely consumed beverages in the world. However, the cultivation of this crop is threatened by Hemileia vastatrix Berk & Broome, a fungal disease, which reduces the productivity and can cause significant economic losses. In this protocol, coffee leaf segment derived from a chemical mutagenesis process are inoculated with uredospores of the pathogen. Subsequently, the gene expression changes are analyzed over the time (0, 5, 24, 48, and 120 h) using quantitative real-time polymerase chain reaction (RT-qPCR). The procedures and example data are presented for expression analysis in the CaWRKY1 gene. This procedure can be applied for quantitative analysis of other genes of interest to coffee breeders and scientists for elucidating the molecular mechanisms involved in the interaction between the plant and pathogen, potentially leading to the development of more efficient approaches for managing this disease.


Assuntos
Basidiomycota , Coffea , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Coffea/microbiologia , Coffea/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Perfilação da Expressão Gênica/métodos , Mutação , Folhas de Planta/microbiologia , Folhas de Planta/genética , Interações Hospedeiro-Patógeno/genética
11.
Methods Mol Biol ; 2787: 305-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656499

RESUMO

Bimolecular fluorescence complementation (BiFC) is a powerful tool for studying protein-protein interactions in living cells. By fusing interacting proteins to fluorescent protein fragments, BiFC allows visualization of spatial localization patterns of protein complexes. This method has been adapted to a variety of expression systems in different organisms and is widely used to study protein interactions in plant cells. The Agrobacterium-mediated transient expression protocol for BiFC assays in Nicotiana benthamiana (N. benthamiana) leaf cells is widely used, but in this chapter, a method for BiFC assay using Arabidopsis thaliana protoplasts is presented.


Assuntos
Arabidopsis , Folhas de Planta , Protoplastos , Arabidopsis/metabolismo , Arabidopsis/genética , Protoplastos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Mapeamento de Interação de Proteínas/métodos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Microscopia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Tabaco/metabolismo , Tabaco/genética , Ligação Proteica , Agrobacterium/genética , Agrobacterium/metabolismo
12.
Methods Mol Biol ; 2788: 227-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656517

RESUMO

The Coffea spp. plant is a significant crop in Latin America, Africa, and Asia, and recent advances in genomics and transcriptomics have opened possibilities for studying candidate genes and introducing new desirable traits through genetic engineering. While stable transformation of coffee plants has been reported using various techniques, it is a time-consuming and laborious process. To overcome this, transient transformation methods have been developed, which avoid the limitations of stable transformation. This chapter describes an ex vitro protocol for transient expression using A. tumefaciens-mediated infiltration of coffee leaves, which could be used to produce coffee plants expressing desirable traits against biotic and abiotic stresses, genes controlling biochemical and physiological traits, as well as for gene editing through CRISPR/Cas9.


Assuntos
Agrobacterium tumefaciens , Coffea , Edição de Genes , Folhas de Planta , Plantas Geneticamente Modificadas , Transgenes , Coffea/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Agrobacterium tumefaciens/genética , Edição de Genes/métodos , Transformação Genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas
13.
Sci Rep ; 14(1): 9408, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658671

RESUMO

Triticum militinae (2n = 4X = 28, AtAtGG), belonging to the secondary gene pool of wheat, is known to carry resistance to many diseases. Though some disease resistance genes were reported from T. timopheevii, the closest wild relative of T. militinae, there are no reports from T. militinae. Twenty-one T. militinae Derivatives (TMD lines) developed at the Division of Genetics, IARI, New Delhi, were evaluated for leaf and stripe rusts at seedling and adult plant stages. Eight TMD lines (6-4, 6-5, 11-6, 12-4, 12-8, 12-12, 13-7 and 13-9) showed seedling resistance to both leaf and stripe rusts while six TMD lines (7-5, 7-6, 11-5, 13-1, 13-3 and 13-4) showed seedling resistance to leaf rust but adult plant resistance to stripe rust and three TMD lines (9-1, 9-2 and 15) showed seedling resistance to leaf rust but susceptibility to stripe rust. Three TMD lines (2-7, 2-8 and 6-1) with adult plant resistance to leaf and stripe rusts were found to carry the known gene Lr34/Yr18. Ten TMD lines (7-5, 7-6, 9-1, 9-2, 11-5, 11-6, 12-12, 12-4, 12-8, and 15) with seedling resistance to leaf rust, showing absence of known genes Lr18 and Lr50 with linked markers requires further confirmation by the test of allelism studies. As not a single stripe rust resistance gene has been reported from T. militinae or its close relative T. timpopheevii, all the 8 TMD lines (6-4, 6-5, 11-6,12-4, 12-8, 12-12, 13-7 and 13-9) identified of carrying seedling resistance to stripe rust and 3 TMD lines (13-1, 13-3 and 13-4) identified of carrying adult plant resistance to stripe rust are expected to carry unknown genes. Also, all the TMD lines were found to be cytologically stable and thus can be used in inheritance and mapping studies.


Assuntos
Basidiomycota , Resistência à Doença , Doenças das Plantas , Plântula , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Plântula/genética , Plântula/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/genética , Genes de Plantas
14.
BMC Plant Biol ; 24(1): 322, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654173

RESUMO

BACKGROUND: PIN-FORMED genes (PINs) are crucial in plant development as they determine the directionality of auxin flow. They are present in almost all land plants and even in green algae. However, their role in fern development has not yet been determined. This study aims to investigate the function of CrPINMa in the quasi-model water fern Ceratopteris richardii. RESULTS: CrPINMa possessed a long central hydrophilic loop and characteristic motifs within it, which indicated that it belonged to the canonical rather than the non-canonical PINs. CrPINMa was positioned in the lineage leading to Arabidopsis PIN6 but not that to its PIN1, and it had undergone numerous gene duplications. CRISPR/Cas9 genome editing had been performed in ferns for the first time, producing diverse mutations including local frameshifts for CrPINMa. Plants possessing disrupted CrPINMa exhibited retarded leaf emergence and reduced leaf size though they could survive and reproduce at the same time. CrPINMa transcripts were distributed in the shoot apical meristem, leaf primordia and their vasculature. Finally, CrPINMa proteins were localized to the plasma membrane rather than other cell parts. CONCLUSIONS: CRISPR/Cas9 genome editing is feasible in ferns, and that PINs can play a role in fern leaf development.


Assuntos
Sistemas CRISPR-Cas , Folhas de Planta , Proteínas de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Edição de Genes , Pteridaceae/genética , Pteridaceae/metabolismo , Pteridaceae/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Gleiquênias/genética , Gleiquênias/crescimento & desenvolvimento , Gleiquênias/metabolismo
15.
Commun Biol ; 7(1): 431, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637665

RESUMO

The ability to respond to varying environments is crucial for sessile organisms such as plants. The amphibious plant Rorippa aquatica exhibits a striking type of phenotypic plasticity known as heterophylly, a phenomenon in which leaf form is altered in response to environmental factors. However, the underlying molecular mechanisms of heterophylly are yet to be fully understood. To uncover the genetic basis and analyze the evolutionary processes driving heterophylly in R. aquatica, we assembled the chromosome-level genome of the species. Comparative chromosome painting and chromosomal genomics revealed that allopolyploidization and subsequent post-polyploid descending dysploidy occurred during the speciation of R. aquatica. Based on the obtained genomic data, the transcriptome analyses revealed that ethylene signaling plays a central role in regulating heterophylly under submerged conditions, with blue light signaling acting as an attenuator of ethylene signal. The assembled R. aquatica reference genome provides insights into the molecular mechanisms and evolution of heterophylly.


Assuntos
Rorippa , Rorippa/genética , Etilenos , Folhas de Planta/genética , Adaptação Fisiológica , Cromossomos
16.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1120-1137, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658153

RESUMO

The leaves and roots of Liriope muscari (Decne.) Baily were subjected to high-throughput Illumina transcriptome sequencing. Bioinformatics analysis was used to investigate the enzyme genes and key transcription factors involved in regulating the accumulation of steroidal saponins, which are the main active ingredient in L. muscari. These analyses aimed to reveal the molecular mechanism behind steroidal saponin accumulation. The sequencing results of L. muscari revealed 31 enzymes, including AACT, CAS, DXS and DXR, that are involved in the synthesis of steroidal saponins. Among these enzymes, 16 were in the synthesis of terpenoid skeleton, 3 were involved in the synthesis of sesquiterpene and triterpene, and 12 were involved in the synthesis of steroidal compound. Differential gene expression identified 15 metabolic enzymes coded by 34 differentially expressed genes (DEGs) in the leaves and roots, which were associated with steroidal saponin synthesis. Further analysis using gene co-expression patterns showed that 14 metabolic enzymes coded by 31 DEGs were co-expressed. In addition, analysis using gene co-expression analysis and PlantTFDB's transcription factor analysis tool predicted the involvement of 8 transcription factors, including GAI, PIF4, PIL6, ERF8, SVP, LHCA4, NF-YB3 and DOF2.4, in regulating 6 metabolic enzymes such as DXS, DXR, HMGR, DHCR7, DHCR24, and CAS. These eight transcription factors were predicted to play important roles in regulating steroidal saponin accumulation in L. muscari. Promoter analysis of these transcription factors indicated that their main regulatory mechanisms involve processes such as abscisic acid response, drought-induction stress response and light response, especially abscisic acid responsive elements (ABRE) response and MYB binding site involved in drought-inducibility (MBS) response pathway. Furthermore, qRT-PCR analysis of these eight key transcription factors demonstrated their specific differences in the leaves and roots.


Assuntos
Biologia Computacional , Liriope (Planta) , Folhas de Planta , Saponinas , Fatores de Transcrição , Transcriptoma , Saponinas/metabolismo , Saponinas/biossíntese , Biologia Computacional/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Liriope (Planta)/genética , Liriope (Planta)/metabolismo , Esteroides/metabolismo , Esteroides/biossíntese , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala
17.
BMC Plant Biol ; 24(1): 203, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509491

RESUMO

BACKGROUND: Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS: Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION: These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.


Assuntos
Antocianinas , Chenopodium quinoa , Antocianinas/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Glucosídeos , Regulação da Expressão Gênica de Plantas
18.
Theor Appl Genet ; 137(3): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441678

RESUMO

KEY MESSAGE: Green Leaf Area Index dynamics is a promising secondary trait for grain yield and drought tolerance. Multivariate GWAS is particularly well suited to identify the genetic determinants of the green leaf area index dynamics. Improvement of maize grain yield is impeded by important genotype-environment interactions, especially under drought conditions. The use of secondary traits, that are correlated with yield, more heritable and less prone to genotype-environment interactions, can increase breeding efficiency. Here, we studied the genetic basis of a new secondary trait: the green leaf area index (GLAI) dynamics over the maize life cycle. For this, we used an unmanned aerial vehicle to characterize the GLAI dynamics of a diverse panel in well-watered and water-deficient trials in two years. From the dynamics, we derived 24 traits (slopes, durations, areas under the curve), and showed that six of them were heritable traits representative of the panel diversity. To identify the genetic determinants of GLAI, we compared two genome-wide association approaches: a univariate (single-trait) method and a multivariate (multi-trait) method combining GLAI traits, grain yield, and precocity. The explicit modeling of correlation structure between secondary traits and grain yield in the multivariate mixed model led to 2.5 times more associations detected. A total of 475 quantitative trait loci (QTLs) were detected. The genetic architecture of GLAI traits appears less complex than that of yield with stronger-effect QTLs that are more stable between environments. We also showed that a subset of GLAI QTLs explains nearly one fifth of yield variability across a larger environmental network of 11 water-deficient trials. GLAI dynamics is a promising grain yield secondary trait in optimal and drought conditions, and the detected QTLs could help to increase breeding efficiency through a marker-assisted approach.


Assuntos
Secas , Zea mays , Zea mays/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Folhas de Planta/genética , Grão Comestível/genética , Água
19.
Genes (Basel) ; 15(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540394

RESUMO

Magnolia kwangsiensis, a dioecious tree native to China, is recognized not only for its status as an at-risk species but also for its potential in therapeutic applications courtesy of its bioactive compounds. However, the genetic underpinnings of its leaf development and compound biosynthesis are not well documented. Our study aims to bridge this knowledge gap through comparative transcriptomics, analyzing gene expression through different leaf maturation stages. We studied the transcriptome of M. kwangsiensis leaves by applying RNA sequencing at juvenile, tender, and mature phases. We identified differentially expressed genes (DEGs) to explore transcriptional changes accompanying the developmental trajectory. Our analysis delineates the transcriptional landscape of over 20,000 genes with over 6000 DEGs highlighting significant transcriptional shifts throughout leaf maturation. Mature leaves demonstrated upregulation in pathways related to photosynthesis, cell wall formation, and polysaccharide production, affirming their structural integrity and specialized metabolic functions. Our GO and KEGG enrichment analyses underpin these findings. Furthermore, we unveiled coordinated gene activity correlating development with synthesizing therapeutically relevant polysaccharides. We identified four novel glycosyltransferases potentially pivotal in this synergistic mechanism. Our study uncovers the complementary evolutionary forces that concurrently sculpt structural and chemical defenses. These genetic mechanisms calibrate leaf tissue resilience and biochemical efficacy.


Assuntos
Magnolia , Magnolia/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Folhas de Planta/genética , Folhas de Planta/química , Análise de Sequência de RNA
20.
Genes (Basel) ; 15(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540443

RESUMO

The RNA-Seq and gene expression data of mature leaves under high temperature stress of Paeonia suffruticosa 'Hu Hong' were used to explore the key genes of heat tolerance of peony. The weighted gene co-expression network analysis (WGCNA) method was used to construct the network, and the main modules and core genes of co-expression were screened according to the results of gene expression and module function enrichment analysis. According to the correlation of gene expression, the network was divided into 19 modules. By analyzing the expression patterns of each module gene, Blue, Salmon and Yellow were identified as the key modules of peony heat response related functions. GO and KEGG functional enrichment analysis was performed on the genes in the three modules and a network diagram was constructed. Based on this, two key genes PsWRKY53 (TRINITY_DN60998_c1_g2, TRINITY_DN71537_c0_g1) and PsHsfB2b (TRINITY_DN56794_c0_g1) were excavated, which may play a key role in the heat shock response of peony. The three co-expression modules and two key genes were helpful to further elucidate the heat resistance mechanism of P. suffruticosa 'Hu Hong'.


Assuntos
Paeonia , Paeonia/genética , Perfilação da Expressão Gênica , Folhas de Planta/genética , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...